Dr. Homi Bhabha State University, Mumbai

The Institute of Science

Syllabus for M. Sc (Semester I)

CHEMISTRY

Choice based Credit System

(To be Implemented from Academic year 2023-2024)

	Course Code: MSCHDC101T/ MSCHDE101T	Course Title: Physical Chemistry	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.	Cou	urse Contents (Topics & subtopics)	Reqd. hours
	UNIT I Thermodyn		15 Hrs
	thermodynamic Re gases, Joule Thoms	exact differentials. Maxwell equations, Maxwell elations; it's significance and applications to ideal on experiment, Joule Thomson coefficient, inversion Thomson coefficient in terms of van der Waals	8
	absolute entropies, o capacity, standard r	odynamics, Entropy change for a phase transition, determination of absolute entropies in terms ofheat nolar entropies and their dependence on molecular structure, residual entropy. 12 17]	7
	UNIT II Quantum	Chemistry	15 Hrs
	of wave functions, wave functions. Operators and its a thermodynamic vari- angular momentur eigenvalue equatio equation of the Har value of a dynam Mechanics, Schroo Schrodinger's time Application of quantu Free particle, wave fu b)Particle in a one-, tr variables, Expression the energy of the syste number, degeneracy o c)Harmonic oscillator, polynomials, expression	approximate solution of the equation, Hermite on for wave function, expression for energy,	
		rmula.[Ref 7, 8 and 9]	
	UNIT III Chemical		15 Hrs
	reactions, Steady state Appr	ate laws, Differential rate equationsConsecutive roximation, rate determining steps, Microscopic	
	D 11117 11	Detailed Balanced Chain reactions-chain	

Hydrogen and Bromine and some general examples of Organic Decompositions: Decomposition of ethane, decomposition of acetaldehyde	
Gas phase combustion: Reaction between hydrogen and oxygen, Semenov–	
Hinshelwood and Thompson mechanism, Explosion limits and	
factors affecting explosion limits.	
Polymerization reactions: Kinetics of stepwise polymerization, Calculation of degree of polymerization for stepwise reaction. Kinetics of free radical chain polymerization, Kinetic chain lengthand estimation of average no. of monomer units in the polymer produced by chain polymerization.	
Reaction in Gas Phase Unimolecular Reactions: Lindeman-Hinshelwood theory, Rice- Ramsperger- Kasssel (RRK) theory, Rice-Ramsperger-Kassel Marcus (RRKM) theory. [Ref. 2 and 15, 17,18]	
UNIT IV Electrochemistry Recapitulation – basics of electrochemistry	15 H
Debye-Hückel theory of activity coefficient, Debye-Hückel limiting law and it's extension to higher concentrations (derivations are expected).	
Electrolytic conductance and ionic interaction, relaxation effect, Debye- Hückel- Onsager equation(derivation expected). Validity of this equation for aqueous and non-aqueous solution, deviations from Onsager equation, Debye-Falkenhagen effect (dispersion of conductance at high frequencies), Wien effect.	
Batteries: Alkaline fuel cells, Phosphoric acid fuel cells, High temperature fuel cells [Solid –Oxide Fuel Cells (SOFC) and Molten Carbonate Fuel Cells]	
Bio-electrochemistry: Introduction, cells and membranes, membrane potentials, theory of membrane potentials, interfacial electron transfer in biological systems, adsorption of proteins on to metals from solution, electron transfer from modified metals to dissolved protein in solution, enzymes as electrodes, electrochemical enzyme-catalysed oxidation of styrene.Goldmann equation. (derivations are expected) [Ref: 14 and16, 17, 18]	
[Note: Numerical and theoretical problems from each unit are expected]	
Suggested readings	
1. Peter Atkins and Julio de Paula, Atkin's <i>Physical Chemistry</i> , 7 th	

	2. K.J. Laidler and J.H. Meiser, <i>Physical Chemistry</i> , 2 nd Ed., CBS	
	Publishers and	
	Distributors, New Delhi, 1999.	
	3. Robert J. Silby and Robert A. Alberty, <i>PhysicalChemistry</i> , 3 rd Edn.,	
	John Wiley and	
	Sons (Asia) Pvt. Ltd., 2002.	
	4. Ira R. Levine, <i>Physical Chemistry</i> , 5 th Edn., Tata McGraw-Hill	
	New Delhi, 2002.	
	5. G.W.Castellan, Physical Chemistry, 3rdEdn., Narosa Publishing	
	House, NewDelhi,	
	1983.	
	6. S.Glasstone, Text Book of PhysicalChemistry, 2 nd Edn., McMillan	
	and Co.Ltd., London, 1962	
	7. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani	
	Publishers, 2003.	
	8. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw –	
	Hill, 1994.	
	9. R.K. Prasad, <i>Quantum Chemistry</i> , 2 nd Edn., New Age International	
	Publishers, 2000.	
	10. S.Glasstone, <i>Thermodynamics for Chemists</i> , Affiliated East-WestPress, New Delhi,	
	1964.	
	11. W.G. Davis, Introduction to Chemical Thermodynamics – A Non	
	– Calculus	
	Approach, Saunders, Philadelphia, 19772.	
	12. Peter A. Rock, <i>Chemical Thermodynamics</i> , University Science	
	Books, Oxford	
	University Press, 1983.	
	13. IraN.Levine, Quantum Chemistry, 5th Edn., Pearson Education	
	(Singapore) Pvt. Ltd., Indian Branch, New Delhi, 2000.	
	14. Thomas Engeland Philip Reid, PhysicalChemistry, 3 rd	
	Edn., Pearson Education	
	Limited 2013.	
	15. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1stEdn.,	
	1992.	
	16. <i>Bockris</i> , John O'M., <i>Reddy</i> , Amulya K.N., Gamboa-Aldeco,	
	Maria E., Modern	
	Electrochemistry, 2A, Plenum Publishers, 1998.	
	17. Physical Chemistry by Gurtu and Gurtu	
	18. A Text book of Physical Chemistryby K L kapoor Vol 5, 2 nd Edn	
	Course outcomes (Students will be able to)	
1.	Understand the basic concepts of thermodynamics and learn the state	
-	functions, entropy and entropy change during the reactions.	
2.	Get the basic idea about quantum chemistry and its use to solve the simple	
-	problems.	
3	Learn the chemical dynamics of Composite, chain, Polymerization and gas	
	phase reactions.	

4.	Get the basic idea about electrochemistry, batteries and	
	bioelectrochemistry	

MS(MSc), CH(Chemistry), DC(Core Course),101(SEM I), T(Theory)

MSCHDE101P		
Course Credit: 2	Total contact hours: 60 Hrs	
Cou	arse Contents (Topics & subtopics)	
Non – Instrumental:		
 acid (benzoic/ three differen 2. To investigate 3. To study the v NaOH and he room tempera 4. Graph Plotting trigonometry 	 disalicylic acid) from solubility measurement at t temperatures. e the reaction between acetone and iodine. variation in the solubility of Ca(OH)₂ in presence of nce to determine the solubility product of Ca(OH)₂at ture. g of mathematical functions–linear, exponential and and identify whether functions are acceptable or 	
non-acceptabl Instrumental:	e.	60 Hrs
by e.m.f. mea2. To determine titration with a3. To verify Ostronomic data and the second second	surement. pKa values of phosphoric acid by potentiometric sodium hydroxide using glass electrode. wald's dilution law and to determine the dissociation	
Suggested readings		
 Viva Books Priv 2. Practical Physica 3rd Edn., Longm 3. Experimental Physica 100 (2010) 	vate Limited, 2005. al Chemistry, A.M. James and F. E. Prichard, an Group Ltd., 1974. hysical Chemistry, V.D. Athawale and P. Mathur,	
Course outcom	es (Students will be able to)	
enthalpy, so	lubility, solubility products etc.	
3. Understand	the kinetics of reaction/	
4. Learn princi techniques.	ples and applications of various types of Instrumental	
	 Non – Instrumental: To determine acid (benzoic/three differen To investigate To investigate To study the vanaOH and he room tempera Graph Plotting trigonometry non-acceptable Instrumental: To determine by e.m.f. mea To verify Ostv constant of a vana titration with a vana titration vana vana titration vana titratio	 Non – Instrumental: To determine the heat of solution (ΔH) of a sparingly soluble acid (benzoic/salicylic acid) from solubility measurement at three different temperatures. To investigate the reaction between acetone and iodine. To study the variation in the solubility of Ca(OH)₂ in presence of NaOH and hence to determine the solubility product of Ca(OH)₂at room temperature. Graph Plotting of mathematical functions–linear, exponential and trigonometry and identify whether functions are acceptable or non-acceptable. Instrumental: To determine the mean ionic activity coefficient of an electrolyte by e.m.f. measurement. To determine pKa values of phosphoric acid by potentiometric titration with sodium hydroxide using glass electrode. To verify Ostwald's dilution law and to determine the dissociation constant of a weak mono-basic acid conductometrically. Suggested readings Practical Physical Chemistry, B. Viswanathan and P.S. Raghavan, Viva Books Private Limited, 2005. Practical Physical Chemistry, A.M. James and F. E. Prichard, 3rd Edn., Longman Group Ltd., 1974. Experimental Physical Chemistry, V.D. Athawale and P. Mathur, New Age International Publishers, 2001. Course outcomes (Students will be able to) Learn to determine the thermodynamic parameters such as entropy enthalpy, solubility, solubility products etc. Draw the graphs of various types of mathematical functions. Understand the kinetics of reaction/ Learn principles and applications of various types of Instrumental

	Course Code: MSCHDC102T/ MSCHDE102T	Course Title: Inorganic Chemistry	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.		rse Contents (Topics & subtopics)	Reqd. hours
	UNIT I Solid State		15 Hrs
	a) AB [Halite(Nac b) AB ₂ [fluorite(C	anic Compounds of the type: Cl) and Nicolite(NiAs)]. CaF ₂), antifluorite(Na ₂ O) and rutile(TiO ₂). s [cadmium chloride(CdCl ₂) and iodide(CdI ₂)].	
	a) Ceramic meth c) Sol-gel metho	 ration for Inorganic solids by: od, b) Precursor method, d and d) Microwave synthesis rinciples, examples, merits and demerits are 	
		ods Nanomaterials: n method, b) Langmuir Blodgett (L-B) method and thods : synthesis using microorganisms	
	iv) Band theory an semiconductors.	d applications of Nanomaterials in the field of	
	UNIT II Inorganic R	Reaction Mechanisms	15 Hrs
	Rate of reac	tions, factors affecting the rate of reactions,	
	-	or determination of rate of reaction(Direct	
	Chemical Ar	alysis, Electrochemical and Flow methods).	
	0	itution reactions of: al complexes without breaking of metal- ligand	
		anar complexes – trans-effect, its theories and	
	Mechanism a reactions.	and factors affecting these substitution	
	transfer react	ons: Introduction of electron and atom tions, inner and outer sphere mechanisms, ry, complimentary and non- ry reactions.	
		stry of reactions of octahedral complexes on and Racemisation reactions)	
	UNIT III Organome	etallic Chemistry	15 Hrs

(i)	Electron counting of organometallic compounds. Application of MOT for the counting of electrons.	
	Eighteen electron rule and sixteen electron rule and with	
	examples.	
(")	-	_
(ii)	Preparation and properties of the following compounds	
	a) Alkyl and aryl derivatives of Pd and Pt complexes	
	b) Carbenes and carbynes of Cr, Mo and W	
	c) Alkene derivatives of Pd and Ptd) Alkyne derivatives of Pd and Pt	
	e) Allyl derivatives of nickel	
	f) Sandwich compounds of Fe, Cr and	
	Half Sandwich compounds of Cr, Mo.	
	Structure and bonding on the basis of VBT and MOT in the following organometallic compounds:	
	a) Zeise"s salt	
	 b) Bis(triphenylphosphine)diphenylacetylene platinum(0) [Pt(PPh₃)₂(HC=CPh)₂], 	
	Structure and bonding on the basis of VBT and MOT in the sandwiched and half sandwiched organometallic	
	compounds:	
	compounds:	
	compounds:a) Diallylnickel(II), ferrocene and bis(arene)chromium(0),	
	compounds:	
UNIT	compounds:a) Diallylnickel(II), ferrocene and bis(arene)chromium(0),	15 Hrs
UNII	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). C IV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). CIV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). C IV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). C IV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe- 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). TV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). CIV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ, B, C, Nephelauxetic ratio. 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). C IV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ, B, C, Nephelauxetic ratio. Determination of formation constants of metal complexes 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). CIV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ, B, C, Nephelauxetic ratio. Determination of formation constants of metal complexes (Overall and Stepwise): Comparative studies of 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). CIV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ, B, C, Nephelauxetic ratio. Determination of formation constants of metal complexes (Overall and Stepwise): Comparative studies of Potentiometric and spectral methods. 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). CIV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ, B, C, Nephelauxetic ratio. Determination of formation constants of metal complexes (Overall and Stepwise): Comparative studies of Potentiometric and spectral methods. 	15 Hrs
	 compounds: a) Diallylnickel(II), ferrocene and bis(arene)chromium(0), b) Tricarbonyl (η²-butadiene) iron(0). CIV Characterisation of Coordination compounds Formation, Conductivity measurements, thermal studies and magnetic measurements. Spectroscopic methods: IR, NMR, ESR, UV-Visible and electronic spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ, B, C, Nephelauxetic ratio. Determination of formation constants of metal complexes (Overall and Stepwise): Comparative studies of Potentiometric and spectral methods. sted readings Unit I 	15 Hrs

2.	Nanomaterials & Nanochemistry, 2007, Catherine Brechignac, Philippe Houdy, Marcel Lahmani, ISBN 978- 3-540-72992-1 Springer Berlin Heidelberg New York.
3.	Nanomaterials Chemistry, Recent Developments and New Directions C.N.R. Rao, A. Muller, and A.K. Cheetham, ISBN 978-3-527-31664- 9, 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
4.	Nano-Surface Chemistry, 2001, Morton Rosoff, ISBN: 0- 8247-0254-9, Marcel Dekker Inc. New York.
5.	The Chemistry of Nanomaterials, CNR Rao, Muller Cheetham, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
6.	Semiconductor Nanomaterials, Challa S.S.R. Kumar, ISBN: 978-3-527-32166-7, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.
7.	Principles of Nano-technology, Sulbha Kulkarni.
	Unit II
1.	P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Inorganic Chemistry, 5 th Ed., Oxford University Press, 2010.
2.	D. Banerjea, Coordination Chemistry, Tata McGraw Hill, 1993.
3.	W. H. Malik, G. D./ Tuli and R. D. Madan, Selected Topics in Inorganic Chemistry, 8 th Ed., S. Chand & Company ltd.
4.	M. L. Tobe and J. Burgess, Inorganic Reaction Mechanism, Longman, 1999.
5.	S. Asperger, Chemical kinetics and Inorganic Reaction Mechanism, 2 nd Ed., Kluwer Academic/ Plenum Publishers, 2002
6.	Gurdeep Raj, Advanced Inorganic Chemistry-Vol.II, 12 th Edition, Goel publishing house, 2012.
7.	B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.
8.	F. Basalo and R. G. Pearson, Mechanism of Inorganic Reactions, 2 nd Ed., Wiley, 1967.
9.	R. Gopalan and V. Ramlingam, Concise Coordination chemistry, Vikas Publishing house Pvt Ltd., 2001.
10.	Robert B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd Ed., Oxford University Press 2008.

	Unit III	
	 D. Banerjea, Coordination chemistry. Tata McGrew Hill, New Delhi, 1993. 	
	 R.C Mehrotra and A.Singh, Organometallic Chemistry- A unified Approach, 2nded, New Age International Pvt Ltd, 2000. 	
	 R.H Crabtree, The Organometallic Chemistry of the Transition Metals, 5th edition, Wiley International Pvt, Ltd 2000. 	
	 B.Doughlas, D.H McDaniel and J.J Alexander. Concepts and Models of Inorganic Chemistry, 2nd edition, John Wiley and Sons. 1983. 	
	5. Organometallic Chemistry by G.S Sodhi. Ane Books Pvt Ltd.	
	Unit IV	
	 J. E. Huheey, E. A. Keiter and R. L. Keiter; Inorganic Chemistry: Principles of Structure and Reactivity, Pearson Education, 2006. 	
	2. D. Banerjea ,Coordination Chemistry	
	3. Geary Coordination reviews	
	 P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong; Shriver & Atkins: Inorganic Chemistry, 4th ed. Oxford University Press, 2006. 	
	 F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann; Advanced Inorganic Chemistry, 6th ed. Wiley, 1999, 	
	 B. Douglas, D. McDaniel and J. Alexander. Concepts and Models of Inorganic Chemistry(3rd edn.), John Wiley & Sons (1994). 	
	Course outcomes (Students will be able to know)	
1	Basics of Solid-State Chemistry and Nanomaterials. To draw crystal	
	structures and some preparative methods for Inorganic Compounds and nanomaterials. Band theory for electronic structures of solids and its	
	applications in the field of semiconductors.	
2	Electron counting with the help of MOT for 18 electron rule and sixteen electron rule. Synthesis and chemical properties of organometallics of Pt, Pd, Cr, W, Fe, Mo and Ni. Structure and bonding of organometallics by VBT and MOT. Study of sandwiched and half sandwiched complexes	
3	Rate of reaction, factors affecting rate of reaction and methods used for	
-	determination of rate of reaction. Effect of stereochemistry of coordination compounds on its biological properties and how to synthesize coordination compounds which is used for medicinal purposes.	

4	The formation of complexes, their electrolytic nature, thermal stability and magnetic properties. Various spectroscopic methods and electronic parameters for the study of complexes. The determination of stability constant and its signification.	
---	---	--

MS(Masters), CH(Chemistry), DSC (Core Course), (SEM I, DSC-1-1), T(Theory)

	Course Code:	Course Title: Inorganic Chemistry LAB
	MSCHLB102P/ MSCHDE102P	
	Course Credit: 2	Total contact hours: 60 Hrs
Sr. No.	Course Contents (To	opics & subtopics)
	(i) Ores an	d Alloys
	a) Analysi	s of Devarda"s alloy
	b) Analysi	s of Tin Solder alloy
	c) Analysi	s of Limestone
	(ii) Instrun	nentation
	a) Estimat	tion of Cu ²⁺ using lodometric method Potentiometrically
	b) Estimat	tion of Cl ⁻ using AgNO ₃ using conductometrically
	c) Estimat	tion of Ti ⁴⁺ using peroxide method Colorimetrically
	Suggested readings	;
		ed experiments in Inorganic Chemistry., G. N. Mukherjee., 1 st 010., U.N.Dhur & Sons Pvt Ltd
	-	nthesis and Characterization of Inorganic Compounds by n L. Jolly
	-	nic Chemistry Practical Under UGC Syllabus for M.Sc. in all niversities By: <u>Dr Deepak Pant</u>

MS(Masters), CH(Chemistry), LB(Laboratory), 102(SEM I, CC2), P(Practical)

	Course Code MSCHDC103T/ MSCHDE103T Course Credit: 4	Course Title: Organic Chemistry Total hours: 60 Hrs	
Sr. No.	Cour	rse Contents (Topics & subtopics)	Reqd. hours
1	UNIT I Kinetics	and mechanisms of Organic Reactions	15 Hrs
	 Activated Complex Complex, Hammody trapping of interce chemical evidence reactions Electronic Effect and equation, substituent interpretation of σ-val equation, deviations Principle, Taft Equation 	c Reactions: Activation Energy and ex, Reaction Energetics, Structure of Activated ond's Postulates, Isotope Effect, Detection and rmediates, crossover experiments and stereo e, Kinetic vs Thermodynamic control of organic d Reactivity: Electronic Effect, The Hammett constants, theories of substituent effects, lues, reaction constants ρ, Uses of Hammett from Hammett equation, Curtin-Hammett on, Using the Hammett rho values to uncover ear Hammett Plots, Correlation of structure and	
2	reactivity	luction to Molecular Orbital Theory for	15
		Organic Chemistry	Hrs
	Molecular orbitals: For of nodal planes and end butadiene, allyl cation, Introduction to FMOs: LUMO gap in absorpti and LUMO (π and π acceptor' interactions in The concept of hardnes and nucleophiles. Ident of MOs with examples. Application of FMC cyclobutane, Diels-A formaldehyde. Aromaticity: Huckel's (4n+2) and 4 criteria for aromaticit systems. Application of HMO Musulin diagrams. Aromatic, antiarom	HOMO and LUMO and significance of HOMO- ion spectra as well as chemical reactions. HOMO t*orbitals) of formaldehyde. Concept of 'donor- n nucleophilic addition reactions on formaldehyde. ss and softness and its application to electrophiles ification of hard and soft reactive sites on the basis O concepts: SN2 reaction, Ethylene dimerization to lder cycloaddition, addition of hydride to n rules. Structural, thermochemical, and magnetic ty, including NMR characteristics of aromatic theory to monocyclic conjugated systems. Frost- natic and Homoaromatic compounds. Aromaticity ns, heterocycles, metallocenes, azulenes, annulenes,	

L

3	UNIT III Fundamentals of Stereochemistry	15 Hrs
	Concept of Chirality:	
	Isomerism (Structural isomerism, Stereoisomerism, Enantiomerism,	
	Distereoisomerism), Constitutionally symmetrical molecules with	
	odd and even number of chiral centers: Enantiomeric and Meso	
	forms, Concept of Stereo genic, Chirotopic, and Pseudo asymmetric	
	centers, Chirality Centers other than carbon, Configurational	
	Nomenclature of compounds with a Stereo center (D and L system,	
	Threo and Erythro System, E-Z system), The Cahn-Ingold-	
	Prelog(CIP) Convention R and S system.	
	Element of Symmetry:	
	Symmetry elements, Operations, Point Group and Stereo chemical	
	properties, Resolution of Racemic mixture, Stereo selective and	
	Stereospecific Reactions	
	Axial and planar chirality:	
	Principles of axial and planar chirality, Stereo chemical features	
	and configurational descriptors (R, S) for the following classes	
	of compounds: allenes, alkylidene cycloalkanes, spirans, biaryls,	
	(including BINOLs and BINAPs), ansa compounds, cyclophanes	
	Prochirality:	
	Chiral and Prochiral centers, Homotopic and Heterotopic Ligands	
	and Faces, Identification using substitution and symmetry criteria	
	Nomenclature of Heterotopic Ligands and Face	
	Tromonomente of freedotopic Digunas and Face	
4	UNIT IV Basics in Synthetic Organic Chemistry	15 Hrs
	Elementary ideas of electronic effects:	
	Inductive effect, Mesomeric effect, Electromeric effects,	
	Hyperconjugation, Steric effect, ortho effect	
	Organic reactive intermediates:	
	Generation, stability, reactivity and examples of carbocations,	
	carbanions, free radicals, carbenes, benzynes and nitrenes	
	Enolates and Enamines:	
	Kinetic and thermodynamic enolate formation, Regioselectivity in	
	enolate formation, alkylation of enolates. Enamines and imines	
	enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines	
	enolate formation, alkylation of enolates. Enamines and imines	
	enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol	
	enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications :	
	enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications: Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A.Dougherty 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A.Dougherty Comprehensive Organic chemistry, Barton and Ollis, Vol 1 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A.Dougherty Comprehensive Organic chemistry, Barton and Ollis, Vol 1 Organic Chemistry, J. Claydens, N. Greeves, S. Warren and 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A.Dougherty Comprehensive Organic chemistry, Barton and Ollis, Vol 1 Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P.Wothers, Oxford University Press. 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A.Dougherty Comprehensive Organic chemistry, Barton and Ollis, Vol 1 Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P.Wothers, Oxford University Press. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part 	
	 enolate formation, alkylation of enolates. Enamines and imines formation, Alkylation and acylation of enamines Reaction,Mechanism and applications : Acid/Base catalyzed aldol condensation reaction, Mixed aldol condensation reactions. Intramolecular Aldol condensation reaction, Michael addition reaction, Robbinson Annulation reaction, Mannich Reaction, Knoevenagel reaction. Suggested readings Physical Organic Chemistry, Neil Isaacs Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A.Dougherty Comprehensive Organic chemistry, Barton and Ollis, Vol 1 Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P.Wothers, Oxford University Press. 	

7. Stereochemistry of carbon compounds, E.L Eliel, S.H Wilen and	
L.NManden, Wiley. 8. Stereochemistry of Organic Compounds-Principles and	
Applications, D. Nasipuri. New International Publishers Ltd.	
9. March's Advanced Organic Chemistry: Reactions, Mechanisms	
andStructure, Michael B. Smith, Jerry March, Wiley.	
10. Advanced Organic Chemistry: Reactions and mechanism, B.	
Millerand R. Prasad, Pearson Education.	
11. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner Academic Press.	,
12. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge University Press.	
13. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, Academic Press.	
14. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon. Nelson Thornes.	,
15. Advanced Organic Chemistry: Reactions and mechanism, L.G Wade, Jr., Maya Shankar Singh, Pearson Education.	•
16. Mechanism in Organic Chemistry, Peter sykes, 6th edition onwards	•
17. Modern Methods of Organic Synthesis, W. Carruthers and Iain Coldham, Cambridge University Press.	
18. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati	
Prakashan.	
Course Outcome:	_
Students will able to understand	
Fundamentals of organic reaction mechanisms and its kinetics	
Molecular Orbital Theory for Organic Chemistry	
Basics in stereochemistry of organic compounds	
Fundamentals of synthetic organic chemistry	

	Course Code MSCHLB103P/ MSCHDE103P	Course Title: Organic ChemistryLAB	
	Course Credit : 2	Total hours: 60 Hrs	
Sr. No.	(Course Contents (Topics & Subtopics)	
	One step preparations	(1.0 g scale) any ten of the following:	
	I. Nitration:		
	1. Bromobenzene to	p-nitrobromobenzene	
	2. Salicylic acid to 5	-nitrosalicylic acid	
	3. Acetanilide to 4-n	itroacetanlide	
	4. Nitrobenzene to n	n-dinitrobenzene	
	II. Oxidation:		
	 Anthracene to ant Benzoin to benzil 	-	
	3. P-nitrotoluene to	p-nitrobenzoic acid	
	4. Benzaldehyde to	benzoic acid	
	III. Diels-Alder reaction	on:	
	1. Anthracene to An	thracene maleic anhydride adduct	
	IV. Halogenation:		
	1. Acetanilide to p-b	romoacetanlide	
	V. Synthesis of Hetero	cycles:	
	1. Ethyl acetoacetate	e to 3-methyl-1-phenylpyrazol-5-one	
	2. o-Phenylenediam	ine to 2-methylbenzimidazole	
	3. o-Phenylenediam	ine to 2,3-diphenylqunooxaline	
	4. Urea and benzil to	5,5-diphenylhydantoin	
	VI. Base Catalysed aldo	l type reaction:	
	1. Green synthesis o	f chalcones condensation of benzaldehyde with :-	
	a) Acetone Or	b)Acetophenone	
	 Course outcomes (Students will be able to) Planning of synthesis, effect of reaction parameters including stoichiometry, and safety aspects including MSDS should be learnt. 		
	 Purify the product by crystallization. Formation and purity of the product should be checked by TLC Report mass and melting point of the purified product 		

	Course Code:	Course Title: Analytical Chemistry	
	MSCHDC104T/		
	MSCHDE104T Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.		ents (Topics & subtopics)	Reqd
1.		d Quality Control in Chemical	15 Hrs
	Analysis		
1.1	Sampling-sample definition	Defining the analytical problem, and types, sampling plan, and d, liquid and gaseous samples. ds-Performance criterions	
1.2		olution and digestion, fusion, ion- Solvent extraction, Solid phase extraction, Dispersive solid phase	
1.3	Quality measurement concept, assurance. Quality Manageme GLP, ICH guidelines	Quality control and Quality nt systems- ISO 9001 and ISO17025	
1.4		method , Instrument qualification, ines , Robustness and Ruggedness	
2.	UNIT II Chemical Stoichion	metry and Data Handling	15 Hrs
2.1	Stoichiometric calculations in expressions,	n analytical chemistry- Concentration	
2.2	coefficient of variance, normal	rrors and distribution of errors can deviation, Standard deviation, distribution, confidence intervals F Rounding Data, Regression analysis-	
2.3	Control Charts.1 The Shewhart CUSUM Charts .4 Range Chart	Measurement Process. Definition of	
3.	UNIT III Optical Methods o	f Analysis	15 Hrs
3.1	Basic Concept of Spectroscopic Wavelength Selectors, Detector	c Instrumentation, Sources,	
3.2	UV/Visible Absorption-Single	e and Quantitative analysis Beer's	

3.3	Infrared absorption spectroscopy-Principle, Sample handling in IR	
	spectroscopy, Instrumentation- Sources, Sampling devices, detectors	
	Dispersive and nondispersive instruments FTIR	
3.4	Application of IR- Mid, Far, Near IR.Qualitative and Quantitative	
	analysis by IR. Advantages and limitations of IR	
	UNIT IV Thermal Methods and Spectroscopy	15 Hrs
4.1	Thermal Methods	15 1115
4.1.1	Principal of thermal method, Classification of Thermal	
	methods, Comparison between TGA and DTA, DTA and DSC	
4.1.2	Differential Scanning calorimeter- Principle, Instrumentation, Block	
	diagram Nature of DSC curves, Factor affecting DSC curve(Sample	
	size, Sample shape and Pressure)	
4.1.3	Applications of Thermal methods- Heat of reaction, Specific heat,	
	Drug analysis, Analysis of polyethylene for its crystallinity.	
	Oxidative stability	
4.2	NMR Spectroscopy	
4.2.1	Recapitulation, Relaxation Processes, Magic angle spinning,	
	FTNMR, Instrumentation- Sample holder, sample probe, Rf	
	generation and detection.	
	REFERENCE BOOKS	
1)	Introduction to instrumental analysis by R. D. Broun, Mc Graw Hill (1987)	
2)	Dean and F.A. settle. Sixth edition CBS (1986) Instrumental methods of chemical analysis by H. Willard, L. Merrit, J.A.	
	settle. Sixth edition CBS (1986)	
3)	Fundamentals of analytical chemistry by D. A. Skoog, D. M. West and H. J.	
	Holler sixth edition (1992)	
4)	Principles of Instrumental Analysis Skoog, West, Niemann.	
5)	Thermal analysis by W.W. Wendlandt, John Wiley, (1986)	
6)	Vogel Text Book of quantitative analysis 6th Ed.	
7)	Preparative chromatography Chrome Ed. book series, Raymond P. W.	
0)	Scott (free e-book available on internet)	
8)	Extraction technique in analytical science, John R. Dean, Wiley (2009)	
	Course Outcome	
1)	Recall and describe the basic concepts of electro analytical, thermal, atomic spectroscopic techniques.	
2)	Illustrate the applications of advanced analytical techniques for various types of chemical analysis. Interpret experimental/spectral data and apply knowledge to solve simple to advance numerical.	
3)	Identify and explain the given scientific problems based on an advanced analytical approach.	

Course Code: MSCHLB104P/ MSCHDE104P	Course Title: Analytical Chemistry LAB
Course Credit : 2	Total hours: 60 Hrs
1)	To carry out assay of the sodium chloride injection by Volhard's method.
2)	Determine the amount of Potassium in the given sample by Flame photometry
3)	To determine amount of Cr (III) and Fe (II) individually in a mixture of the two by titration with EDTA.
4)	Determine the amount of Cr(VI) and Mn(VII) in the given solution by simultaneous spectrophotometric
5)	To determine amount of Cu(II) present in the given solution containing a mixture of Cu(II) and Fe(II).
6)	washing soda pH metrically.
	Suggested reading
1.	Quantitative Inorganic analysis including elementary Instrumental analysis by A.I.Vogel. Third edition. ELBS 1964
2.	Analytical Chemistry by Gary D. Christian, 6th edition, John Wiley and sons Publication
3.	Ewings Analytical Instrumental Handbook, Third Edition. Edited by Jack Cazes
	Course outcomes
	Students will be able to understand, acquire knowledge on Basic concepts of
	Analytical Chemistry, Stoichiometric Calculations, Safety in laboratory, spectroscopy and Thermal methods.

	Course Code	Course Title: Research	
	MSCHMN101T	Methodology	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr.			Reqd.
No.	Course	Contents (Topics & Subtopics)	hours
	UNIT I		15 Hrs
1.1	Research-Definition, Char	acteristics, Objectives, Research and	
	Scientific method		
	Types of Research		
	Descriptive vs. Analytical Research		
	Applied vs. Fundamental	Research	
	Quantitative vs. Qualitativ	ve Research	
	Conceptual vs. Empirical	Research	
	Research Methodology: A	In Introduction	
	Research Process: Basic C	Overview, Formulating the Research	
	Problem. Defining the Res	search Problem, Research Questions	
1.2	Research Methods versus	Methodology, Research and Scientific	
		nowing How Research is Done, Criteria of	
	Good Research	8	
	Problems Encountered by	Researchers in India	
1.3	Defining the Research Pro		
1.5	What is a Research Proble		
		5111 ?	
	Selecting the Problem	the Droblem	
	The Necessity of Defining Technique Involved in De		
	-		
1.4	Research Design		
	Meaning of Research Des	-	
	Need for Research Design		
	Features of a Good Design		
	Important Concepts Relation	0	
	Different Research Design		
	Basic Principles of Experi	mental Designs	
0.1	UNIT II Descent Design Formula	diam of Hamadaas' O CH di '	15 Hrs
2.1	U	ation of Hypothesis, Sources of Hypothesis,	
	Characteristics of Hypothe	esis, Role of Hypothesis, Tests of Hypothesis	
2.2	Sampling Design, Census	and Sample Survey, Implications of a	
		Sampling Design, Criteria of Selecting a	
		racteristics of a Good Sample Design,	
		e Designs, How to Select a Random Sample,	
		Infinite Universe, Complex Random	
	Sampling Designs	́ т	

2.3	Methods of Data Collection, Collection of Primary Data, Observation Method , Interview Method, Collection of Data through Questionnaires, Collection of Data through Schedules, Difference between Questionnaires and Schedules Some Other Methods of Data Collection, Collection of Secondary Data	
	UNIT III	15 Hrs
3.1	 DESCRIPTIVE DATA ANALYSIS (a) Measures of central tendency. (b) Variability (c) Measures of Divergence from Normality • Skewness • Kurtosis (d) Estimation of Population Parameters of Mean and SD. (e) Graphical Presentation of Data. Regression analysis. Parametric Techniques (a) Conditions to be satisfied for using parametric techniques (b) Pearson's Coefficient of Correlation (c) t-test for comparison of Mean Scores. (d) z-test for comparison of r's. (e) ANOVA (f) Hotelling's t-test (g) Biserial and Point-Biserial r 	13 HIS
3.2	Interpretation and Report Writing. Meaning of Interpretation Why Interpretation? The technique of Interpretation: Precaution in Interpretation Significance of Report Writing Different Steps in Writing Report Layout of the Research Report Types of Reports Oral Presentation Mechanics of Writing a Research Report UNIT IV Scientific Communications	
4.1	concept of information organization and dissemination (IOD), Need For IOD, Role Of IOD, Definition Of Documentation, IOD Activities, and Information Sources.	
4.2	Discovering scientific information, Chemical Abstracts Service (CAS), Introduction to Chemical Abstracts and Beilstein, Subject Index, Author Index, Formula Index, citation indices Indices with examples,	
4.3	Web sources, E-journals, E-books, open access, Internet Search engines, Scirus, Google Scholar, ChemIndustry, Wiki-databases, Sci Finder, Scopus, Plagiarism UGC Infonet, Shodhganga	

4.4	publications of scientific work- Scholarly article, Research Paper,	
	Research Project, Legislation Drafting, Judgment Writing, Thesis,	
	Dissertation, Book,	
	Citation Methods- Foot Note, Text Note, End Note, Bibliography,	
	Citation Rules, Blue Book, OSCOLA, MLA, APA, Chicago	
	writing ethics, plagiarism	

Course Outcomes-

- 1. Familiarisation and building competence with the Concept of Research, its importance and its role in advancing society.
- 2. Ability to select an appropriate research method, experimental design.
- 3. Ability to collect, analyse and interpret the data, prepare the research project report, and make Conclusions.
- 4. Effective dissemination of scientific information through scientific writing in different filed, such as scholarly articles, reviews, and technical reports.
- 5. Understand the importance of ethical writing.

Reference books

- 1. Research Methodology, Methods and Techniques, By C. R. Kothari, New Age International (P) Limited
- 2. Elements of Information Organization and Dissemination. Amitabha Chatterjee, Chandos Publishing.
- Managing Scientific Information and Research Data, Svetla Baykoucheva, Elsevier Publisher
- 4. Driving Science Information Discovery in the Digital Age, Svetla Baykoucheva, Elsevier publisher
- 5. Scientists Must Write, A Guide to better writing for Scientists, engineers and Students
- 6. Second edition, Robert Barrass, Routledge-Taylor & Francis Group
- 7. Guide to Publishing a Scientific Paper, Ann M. Körner, Routledge- Taylor & Francis Group
- 8. McGraw Hill's concise guide to Writing Research Papers, Carol Ellison McGraw *Hill Publisher*

Dr. Homi Bhabha State University

The Institute of Science

M Sc Syllabus SEM II

(To be Implemented from 2023-2024)

	Course Code: MSCHDC201T/ MSCHDE201T	Course Title: Physical Chemistry	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.		urse Contents (Topics & subtopics)	Reqd. hours
	UNIT I		15 Hrs
	Chemical Thermodyn		
1.1	graphical method and	ses , Determination of fugacity of real gases using from equation of state. Equilibrium constant for real acity. Gibbs energy of mixing, entropy and enthalpy	
1.2	functions of non idea	nical potential in non-ideal solutions excess al solutions calculation of partial molar volume and by, Gibbs Duhem Margules equation.	
1.3	Thermodynamics of (Laplace equation), v	surfaces, Pressure difference across curved surface apour pressure of droplets (Kelvin equation), Gibbs BET isotherm (derivations expected).	
1.4	exergonic, endergonic	dard free energy change in biochemical reactions, c. Hydrolysis of ATP, synthesis of ATP from ADP.	
	UNIT II		15 Hrs
	Quantum Chemistry		
2.1	U	coordinates, Schrödinger wave equation in spherical on of the variables, wave function, quantization of erical harmonics.	
2.2	translational and pote solution of the R equ their interdependence total wave function, e distances and energie	two particle problem, separation of the energy as ential, separation of variables, R, θ and φ equations, ation, introduction of the four quantum numbers and e on the basis of the solutions of the three equations, xpression for the energy, probability density function, es in atomic units, radial and angular plots, points of , expressions for the total wave function for 1s, 2s, 2p lrogen.	
2.3	Application of the Sci of the equation, need	hrödinger equation to two electron system, limitations for the approximate solutions, methods of obtaining ion of the Schrödinger wave equation.	
2.4	Hückel Molecular O benzene. (Derivation	rbitals theory for ethylene, 1,3-butadiene and expected)	
	UNIT III		15 Hrs
		nd Molecular Reaction Dynamics	
3.1	Reactions between ion	ns in Solution:- Solvent Effects on reaction rates, ns- influence of solvent Dielectric constant, influence ear free energy relationships Enzyme action	
3.2	Kinetics of reactions Lineweaver-Burk and	catalyzed by enzymes -Michaelis-Menten analysis, Eadie Analyses.	

3.3	Inhibition of Enzyme action: Competitive, Non competitive and	
	Uncompetitive Inhibition. Effect of pH, Enzyme activation by metal ions,	
	Regulatory enzymes.	
3.4	Kinetics of reactions in the Solid State:- Factors affecting reactions in	
5.7	solids, Rate laws for reactions in solid: The parabolic rate law, The first	
	order rate law, the contracting sphere rate law, Contracting area rate law,	
	some examples of kinetic studies. (Ref: 7 and 2)	
	UNIT IV	15 Hrs
	Solid State Chemistry and Phase Equilibria	15 1115
4.1		
4.1	Solid State Chemistry	
	4.1.1. Recapitulation: Structures and Defects in solids.	
	Types of Defects and Stoichiometry	
	• •	
	a) Zero dimensional (point) Defects	
	b) One dimensional (line) Defects	
	c) Two dimensional (Planar) Defects	
	d) Thermodynamics of formation of defects (Mathematical derivation to	
	find concentration of defects and numerical problems based on it)	
	(Ref: 17, 18 and 19)	
4.2	Phase equilibria	
4.2		
	4.2.1. Recapitulation: Introduction and definition of terms involved in phase rule. Thermodynamic derivation of Gibbs Phase rule.	
	phase rule. Thermodynamic derivation of Globs Phase rule.	
	4.2.2. Two component system:	
	a) Solid –Gas System : Hydrate formation, Amino compound formation	
	b) Solid – Liquid System: Formation of a compound with congruent	
	melting point, Formation of a compound with incongruent melting point.	
	(with suitable examples	
	4.2.3. Three component system	
	Type-I : Formation of one pair of partially miscible liquids	
	Type-II: Formation of two pairs of partially miscible liquids	
	Type-III: Formation of three pairs of partially miscible liquids $(P_{1}, f_{2}, f_{3}, f_{3$	
	(Ref: 4, 6, 11, 12, 13, 16, 24)	
Sr.No.	References	
51.1 (0.		
1.	Peter Atkins and Julio de Paula, Atkin's Physical Chemistry, 7thEdn.,	
	Oxford University Press, 2002.	
2.	K.J. Laidler and J.H. Meiser, Physical Chemistry, 2 nd Ed., CBS Publishers	
	and Distributors, New Delhi, 1999.	
3	Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3 rd Edn., John	
	Wiley and Sons (Asia) Pvt. Ltd., 2002.	
	• ` ` ` ` ` ` ` `	
4	Ira R. Levine, Physical Chemistry, 5 th Edn., Tata McGraw-Hill New	
	Delhi, 2002.	

5	G.W. Castellan, Physical Chemistry, 3 rd Edn., Narosa Publishing House, New Delhi, 1983.
6	S. Glasstone, Text Book of Physical Chemistry, 2 nd Edn., McMillan and Co. Ltd., London, 1962.
7	Principles of Chemical Kinetics, 2 nd Ed., James E. House, ELSEVIER, 2007.
8	B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
9	A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw – Hill, 1994.
10	R.K. Prasad, Quantum Chemistry, 2 nd Edn., New Age International Publishers, 2000.
11	S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.
12	W.G. Davis, Introduction to Chemical Thermodynamics – A Non – Calculus Approach, Saunders, Philadelphia, 19772.
13	Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.
14	Ira N. Levine, Quantum Chemistry, 5 th Edn., Pearson Education (Singapore) Pvt. Ltd., Indian Branch, New Delhi, 2000.
15	Thomas Engel and Philip Reid, Physical Chemistry, 3 rd Edn., Pearson Education Limited 2013.
16	D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1 st Edn., 1992.
17	Solid State Chemistry [An Introduction], 3 rd Ed., Lesley E. Smart & Elaine A. Moore, Taylor & Francis, 2010.
18	The Physics and 'Chemistry of Solids, Stephen Elliott, Willey India, 2010
19	Principles of the Solid State, H.V. Keer, New Age International Publishers, 2011.
20	Solid State Chemistry, D.K. Chakrabarty, New Age International Publishers, 1996.
21	Principles of physical Chemistry, Marrown and Prutton 5 th edition
22	Essentials of Physical Chemistry, Arun Bahl, B. S Bahl, G. D.Tulli, S
	Chand and Co. Ltd , 2012 Edition.
23	Introduction of Solids, L.V Azaroff, Tata McGraw Hill.
24	A Text book of Physical Chemistry ; Applications of thermodynamics vol III, Mac Millan Publishers India Ltd ,2011
25	New directions in solid state Chemistry, C.N.R. Rao and J Gopalkrishnan , Cambridge University Press.
	Course outcomes (Students will be able to)
1.	Learn the concept of fugacity, real solutions and bioenergetics
2.	Get the basic idea about rigid rotor, learn the hydrogen atom system and approximation methods, Applications of Huckel MO theory.

3.	Understand the chemical kinetics and molecular reaction dynamics	
1.	Learn various types of defects in solid state chemistry, phase rule, two component system, three component system.	

MSCHDC201T ; M (Masters)CH(Chemistry)DC(Core Course) 201(SEM II)T (Theory)

	Course Code: MSCHLB201P/ MSCHDE201P	Course Title: Physical Chemistry LAB	
	Course Credit: 2	Total contact hours: 60 Hrs	
Sr. No.	Non – instrumental		
1.	-	orbitals such as 1s, 2Px and 3dz ² orbitals by using gen atom wave functions.	
2	To study the influence ethyl acetate.	e of ionic strength on the base catalysed hydrolysis of	
3.	To study phase diagra /Toluene - acetic acid	im of three component system water – chloroform.	
	Instrumental		
1.	To determine the form method.	nula of silver ammonia complex by potentiometric	
2.	To determine CMC o conductivities at diffe	f sodium Lauryl Sulphate from measurement of erent concentrations.	
3.	To determine Hamme benzoic acid by pH m	ette constant of m- and p- amino benzoic acid/nitro neasurement.	
	References		
1.	Practical Physical Che Books Private Limite	emistry, B. Viswanathan and P.S. Raghavan, Viva d, 2005.	
2.	Practical Physical Che Longman Group Ltd.	emistry, A.M. James and F.E. Prichard, 3rd Edn., , 1974.	
3.	Experimental Physica International Publishe	l Chemistry, V.D. Athawale and P. Mathur, New Age ers, 2001.	
		tudents will be able to)	
	1. Draw the polar ple component system	ots of atomic orbitals and phase diagram of three n.	
	2. Understand the ki	netics of hydrolysis of ethyl acetate.	
		sic principles of various instrumental techniques and l out physical/thermodynamic parameters.	

MSCHLB201P ; MS (Masters) CH (Chemistry) LB(Laboratory)201(SEM II) P(Practical)

	Course Code: MSCHDC201T/ MSCHDE201T	Course Title: Inorganic Chemistry	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.	Course Contents (To	pics & subtopics)	Reqd. hours
	UNIT I Bioinorganie	e Chemistry	15 Hrs
(i)	Role of Essential elem	ents in biological systems.	
(ii)		rriers: hemoglobin, myoglobine, hemerythrene and action, Bohr effect and their implications.	
(iii)		n in biological system with examples of peroxidase, eroxide dismutase and oxidase reactions.	
(iv)	Nitrogen fixation-nitro	ogenase, Hydrogenases.	
(v)	Metal ion transport and	d storage: Ionophores, Transferrin and Ferritin.	
(vi)	Metal ions in medicine	es, Cis-platin and related compounds.	
	UNIT II Chemical B	onding and Magnetism	15 Hrs
(i)		Concept, Types, Properties, Methods of detection and Waal's forces, Ion-dipole, Dipole-dipole, London	
(ii)		ation of wave functions for the following orbital (BeH_2) ; sp ² (BF ₃); sp ³ (CH ₄) considering only sigma	
(iii)	Molecular Orbital (a) Electron deficient (triodide ion, I_3^{-}).	Theory (LCAO-MO approach) for species (B_2H_6) and (b) Electron rich species	
(iv)	Anti-ferromagnetism,	Diamagnetism, Paramagnetism, Ferromagnetism and Curie and Curie-Weiss laws, Gouy's Method and determination of magnetic susceptibility. Diamagnetic	
	UNIT III Molecular	Symmetry and Group theory	15 Hrs
(i)	Molecular Symmetre elements, Concepts o Multiplication Tables	y: Definition, Symmetry operations and symmetry f Groups and Sub-groups, Definition of Class, Group, Abelian and non-Abelian point groups, symmetry moment, Symmetry criterion of optical activity.	
(ii)	-	Groups: ,- Matrix Representation: Reducible and tations, Reduction of Reducible Representation by	

(iii)	Character tables:- Great Orthogonality Theorem (its three types and five rules), Mulliken's notations for Irreducible Representations, Character of element, Character Table, definition and construction of Character table for	
	C_{2v} and C_{3v} point groups.	
(iv)	Applications of Group Theory:-	
	1) Normal Modes of Analysis: IR active modes and Raman active modes of molecules for C_{2v} , C_{3v} and C_{2h} point groups (Determination of symmetry species in terms of normal modes for translations, rotations and vibrations).	
	2) Group-subgroup relationships: Descent and ascent in symmetry and correlation diagrams showing relationship between different groups.	
	3) Symmetry adapted linear combinations (SALC), symmetry aspects of MO theory, sigma bonding in AB ₄ (Ammonia, CH ₄) molecules.	
	UNIT IV Environmental Chemistry	15 Hrs
(i)	Standard water quality parameters.	
(ii)	Water pollution: Heavy metal pollutants like mercury, lead, cadmium, arsenic, copper and chromium, with respect to their sources, distribution, speciation, toxic effects, control and treatment.	
(iii)	Radiation pollution : Sources and biological implication of radioactive pollutants. Effects of radioactivity on cell proliferation and cancer.	
	Suggested readings	
	Unit I Bioinorganic Chemistry	
	1. R. W. Hay, Bioinorganic Chemistry, Ellis Harwood, England, 1984.	
	2. I. Bertini, H.B. Gray, S.J Lippard and J.S. Valentine, <i>Bioinorganic Chemistry</i> , First South Indian Edition, Viva Books Private ltd, (1998).	
	3. J.A. Cowan, <i>Inorganic Biochemistry - An introduction</i> , VCH Publication, 1993.	
	4. S.J Lippard and J.M. Berg, <i>Principles of Bioinorganic Chemistry</i> , University Science Publications, Mill Valley, Caligronic, 1994.	
	5. G.N. Mukherjee and A. Das, <i>Elements of Bioinorganic Chemistry</i> , Dhuri and Sons, Calcutta, 1988.	
	6. J.Chem Educ. (Special issue), Nov, 1985.	
	7. E. Frienden, J. Chem. Educ., 1985, 62.	
	8. Robert R. Crechton, <i>Biological Inorganic Chemistry- An Introduction</i> , Elsevier.	

Unit II Chemical Bonding and Magnetism

- 1. Elements Of Magnetochemistry- R.L. Datta and Shamal.
- 2. Magnetochemistry by Selwood.
- 3. P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, *Inorganic Chemistry*, 5th Ed., Oxford University Press, 2010.
- 4. J. E. Huheey, E. A. Keiter and R. L. Keiter; *Inorganic Chemistry: Principles of Structure and Reactivity*, Pearson Education, (2006).
- 5. Gary Miessler and Donald Tarr, *Inorganic Chemistry- Principles of Structure and Reactivity*, 4th Edition, Harper Collins, 1993.
- 6. W. H. Malik, G. D./ Tuli and R. D. Madan, *Selected Topics in Inorganic Chemistry*, 8th Ed., S. Chand & Company ltd.
- 7. Earnshaw, Introduction to Magnetochemistry, Academic Press, New York, 1968.
- 8. J. Crangle, The Magnetic Properties of Solids, Edward Arnold, 1977.
- 9. Durrant and Durrant, *Introduction to Advanced Inorganic Chemistry*, Oxford University Press, 1967.
- 10. R.L. Dekock and H.B.Gray, *Chemical Structure and Bonding*, The Benjamin / Cummings Publishing Company, 1989.
- 11. R. Sarkar, *General and Inorganic Chemistry*, Books & Allied (P) Ltd., Calcutta, 2001.
- 12. J.N. Murrell, S.F. A. Kettle and J.M. Tedder, *The Chemical Bond*, Wiley, New York, 1978.
- 13. George A. Jeffrey, *An Introduction to Hydrogen Bonding*, Oxford University Press, Inc., New York, 1997.
- 14. B. R. Puri, L. R. Sharma and K. C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, 2013-2014.
- 15. Gurdeep Raj, *Advanced Inorganic Chemistry*-Vol. II, 12th Edition, Goel publishing house, 2012.
- 16. B.Doughlas, D.H McDaniel and J.J Alexander. *Concepts and Models of Inorganic Chemistry*, 2nd edition, John Wiley and Sons. 1983.
- 17. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann; *Advanced Inorganic Chemistry*, 6th ed. Wiley, (1999).
- 18. P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong; *Shriver & Atkins: Inorganic Chemistry*, 4th ed. Oxford University Press, (2006).

Unit III Molecular Symmetry and Group theory

- 1. *Chemical Applications of Group Theory*, 3rd Edn., Author F. A. Cotton (Wiley, New York)
- 2. *Symmetry and spectroscopy of molecules*, 2nd Ed. 2009; K. Veera Reddy, (New Age International Publication)
- 3. *Group theory and its chemical applications*: P.K Bhattacharya, 2nd edn, Himalaya, pub. India,(1989).
- 4. Symmetry and Group Theory In Chemistry, Mark Ladd, Harwood Publishers, London, (2000)
- 5. *Symmetry Through the Eyes of a Chemist*, I. Hargittai and M. Hargittai, 2nd Edition, Plenum Press, NY (1995)
- 6. *Molecular Symmetry and Group Theory*, Robert L. Carter, John Wiley & Sons (1998).
- 7. *Group Theory for Chemists*, G. Davidson, Macmillan Physical Science Series (1991).
- 8. Molecular symmetry and group theory -A. Vincent.
- 9. Symmetry in Chemistry: H.H. Jaffe' and M. Orchin, Dover Publications Inc, NewYork,(2002).
- 10. Symmetry in Inorganic Chemistry: J.P.Fackler.
- 11. Molecular Symmetry Groups and Chemistry, Rakshit, S.C., The New Book Stall (1988).
- 12. Symmetry and Group Theory for Chemists, Dass, N.N., Asian Books Pvt. Ltd (2004).
- 13. *Group Theory in Chemistry*, Gopinathan, M.S., and Ramakrishnan, V., Vishal Publishers (2006).
- 14. Symmetry in Chemistry Jaffe, H. H. &Orchin, M.,Dover Publications (2002).
- 15. Symmetry in Chemical Bonding & Structure Hatfield, W. E. & Parker, W. E., C. E. Merrill Publishing Co.USA (1974).
- Group Theory and Chemistry, Bishop, D. M., Clarendon Press: Oxford, U.K. (1973).

	Unit IV Environmental Chemistry	
	1. A. K. De, <i>Environmental Chemistry</i> , 7 th Edition, New Age International Publishers.	
	2. G. S. Sodhi, <i>Fundamental Concepts of Environmental Chemistry</i> , Narosa Publishing House.	
	3. S. S. Dara, A Textbook of Environmental Chemistry and Pollution Control, S. Chand & Company Ltd., New Delhi.	
	Course outcomes	
	Students will be able to understand:	
1.	Basics of Bio-inorganic Chemistry and Role of essential elements. Importance of metallobiomolecules. Medical applications of metal ions and complexes.	
2.	Concept of hydrogen bonding and its Types. The hybridisation using wave functions for the sp, sp^2 and sp^3 – hybridisation. The Molecular Orbital Theory for electron deficient species and electron rich species. The theory of diamagnetism, paramagnetism, Ferromagnetism and Anti-ferromagnetism, determination of magnetic susceptibility.	
3.	The symmetry operations, symmetry elements and point group of chemical compounds. Students can check dipole moment and optical activity of given compounds using point group. It will be very easy to discuss the normal modes of analysis for IR and Raman modes using character table. Students will learn about group-subgroup relationship by transfer of properties in terms of irreducible representations and Mulliken's symbols. They also will get an idea of symmetry adopted linear combination of tetrahedral compounds.	
4.	Students will understand standard quality parameters for drinking and industrial purpose and also water pollution by heavy metals and radiation pollution.	

MSCHCC202T ; MS (Masters) CH (Chemistry) CC (Core Course)202(SEM II) T (Theory)

	Course Code: MSCHLB202P / MSCHDE202P	Course Title: InorganicChemistry LAB	
	Course Credit: 2	Total contact hours: 60 Hrs	
Sr. No.	Course Contents (Te	opics & subtopics)	
	 a) Bis(ethylenediamn b) Bis(tetramethylam c) Hexaamine Nickele (ii) Instrumentation a) Estimation of Cu⁺² b) Estimation of Fe⁺² 	aracterization of complexes nine) Copper(II) Sulphate, [Cu(en) ₂]SO ₄ monium) tetrachloro Cobaltate(II) (Me ₄ N) ₂ [CoCl ₄] (II) Sulphate [Ni(NH ₃) ₆] SO ₄ solution using EDTA Spectrophotometrically. solution using Ce(IV) Potentiometrically. re of electrolyte by conductometrically.	
	Suggested readings		
	_	nents in Inorganic Chemistry., G. N. Mukherjee., N. Dhur & Sons Pvt Ltd.	
	2) <i>The Synthesis ar</i> William L. Jolly.	nd Characterization of Inorganic Compounds by	
	3) <i>Inorganic Chemist</i> Universities By: D	<i>ry Practical</i> under UGC Syllabus for M.Sc. in all India or. Deepak Pant.	
	Course outcomes		
	 Spectrophotometric Potentiometric determination 	to understand: cacterization of complexes by different methods. c estimation of Cu by using EDTA. ermination of Fe ⁺² using Ce(IV) ions. re of electrolyte by conductometrically.	

MSCHLB202P ;	; M (Masters) CH	(Chemistry) DSC-1-3	(SEM II) P (Practical)
--------------	------------------	---------------------	------------------------

	Course Code MSCHDC203T/ MSCHDE203T	Course Title: OrganicChemistry	
	Course Credit : 4	Total hours: 60 Hrs	
Sr. No.	Course	Contents (Topics & Subtopics)	Reqd. hours
1	UNI	Γ –I Oxidation and Reduction	15 Hrs
	Oxidation: General mee the following:	chanism, selectivity and important applications of	
	Oxidation of alcohols to a	ldehydes and ketones:	
	(Collin's reagent), PCC Dess-Martin periodinane	h as $K_2Cr_2O_7/H_2SO_4$ (Jones reagent), CrO_3 -pyridine (Corey's reagent), hypervalent iodine reagents (IBX,). DMSO based reagents (Swern oxidation), Pfitzner- and DMSO, Oppenauer oxidation, Swern Oxidation	
	0	bonds cleavage: Glycols using HIO ₄ ; cycloalkanones n double bond using ozone, $KMnO_4$, CrO_3 , $NaIO_4$ using RuO_4 and $NaIO_4$.	
	• •	acement of hydrogen by oxygen: oxidation of CH_2 to f arylmethanes by CrO_2Cl_2 (Etard oxidation).	
	Oxidation of aldehydes an peroxy acid (Baeyer-Vill	nd ketones: with H_2O_2 (Dakin reaction), with iger oxidation)	
	Reduction: General mee the following reducing 1	chanism, selectivity and important applicationsof reagents:	
	Reduction of CO to CH ₂	in aldehydes and ketones- Clemmensen	
	reduction, Wolff-Kishner	reduction and Huang-Minlon modification.	
	2	Boron reagents (NaBH ₄ , NaCNBH ₃ , diborane,9- ninium reagents (LiAlH ₄ , DIBAL-H, Red Al,).	
	NH ₂ NH ₂ (diimide reduction reducing agents (Hantzsch	on) and other non-metal based agents includingorganic h dihydropyridine).	
	0	ons: using Zn, Li, Na, and Mg under neutral and acidic NH_3 mediated reduction (Birch reduction) of acetylenes.	
2	UNIT II Na	me Reactions and Rearrangements	15 Hrs
	Mechanisms, stereochem following reactions:	istry (if applicable) and applications of the	
	Reactions: Baylis-Hilma reaction, Nef reaction, Pa	n reaction, McMurry Coupling, Corey-Fuchs sserini reaction.	
	Concerted rearrangeme	ents: Hofmann, Curtius, Lossen, Schmidt, Wolff	
	phenol, Rupe, Wagner-M	: Tiffeneau-Demjanov, Pummerer, Dienone- eerwein. nents: Brook, Neber, Von Richter, Wittig.	

3	UNIT III Nucleophilic and Electrophilic substitution	15 Hrs
	Nucleophilic substitution reactions (8L)	
	Aliphatic nucleophilic substitution: $S_N 1$, $S_N 2$, S_N^{i} reactions,	
	mixed $S_N 1$ and $S_N 2$ and SET mechanisms. S_N reactions involving	
	NGP - participation by aryl rings, α -and pi-bonds. Factors affecting	
	these reactions: substrate, nucleophilicity, solvent, steric effect, hard-	
	soft interaction, leaving group. Ambident nucleophiles. S _N cA, S _N 1'	
	and S_N^2 reactions. S_N^2 at sp (vinylic) carbon.	
	Aromatic nucleophilic substitution: S _N Ar, S _N 1, benzyne	
	mechanisms. Ipso, cine, tele and vicarious substitution.	
	Ester hydrolysis: Classification, nomenclature and study of all eight mechanisms of acid and base catalyzed hydrolysis with suitable examples.	
	Electrophilic substitution reactions (7L)	
	Aliphatic electrophilic substitution: Unimolecular mechanism SE1 with	
	evidence, Factors affecting on reactivity of SE reactions, SE2 mechanism (Hydrogen exchange), Halogenation of Aldehydes, Ketones and sulphoxides, aliphatic diazonium coupling. Nitrosation at carbon and nitogen.	
	Aromatic electrophilic substitution: Arenium ion mechanism with	
	evidence, Mechanisms of Aromatic electrophilic substitution reactions: Nitration, Sulphonation, Halogenation, Friedel Craft Alkylation and acylation	
	Orientation and reactivity of mono substituted benzene based on charge distribution and intermediate stability. Introduction of third group in benzene ring, IPSO attack.	
4	UNIT IV Fundamentals of Organic spectroscopy	15 Hrs
	Introduction of Spectroscopy of Organic Compounds	
	Ultraviolet spectroscopy: Basic Theory, Chromophore Auxochrome concept,	
	Bathochromic and Hypsochromic shifts, Factors affecting the position of UV	
	bands, Calculation of absorption maxima for dienes and conjugated polyenes	
	(cyclic and acyclic)	
	Infrared spectroscopy: Basic Theory, the modes of stretching and bending,	
	Correlation charts and Tables for alkanes, alkenes, alkynes, aromatics, alcohols,	
	ethers, phenols, amines, nitriles and nitrocompounds, aldehydes, ketones, esters,	
	amides, acids, acid halides, anhydrides and conjugated carbonyl compounds.	
	NMR spectroscopy: Basic Theory and Principles of NMR Spectroscopy,	
	Chemical shift and Shielding, Factors affecting chemical shift (Electronegativity,	
	H-bonding, Anisotropy effects), Chemical equivalence- A Brief Overview, Peak	
	Area and Proton Counting, Spin- Spin Splitting (n+1) Rule, Spin-Spin Coupling Coupling Constant, Company Coupling, Vicinal Coupling, Long Pange Coupling	
	Coupling Constant, Geminal Coupling, Vicinal Coupling, Long Range Coupling Mass spectrometry: Basic Theory and Principles of Mass Spectroscopy,	
	Importance of Molecular ion peak, base peak, metastable ions, isotopic abundance and Nitrogen Rule, Fragmentation patterns and Fragmentation Modes in various	
	classes of organic compounds, Homolytic Cleavage, Heterolytic Cleavage, Retro-	
	Diel's Alder reaction, Ortho Elimination, McLafferty Rearrangement, Molecular	
1	Dier 57 Huer reaction, Ortho Emmination, McEanerty Realtangement, Molecular	

	Structure Elucidation of Organic Compounds involving individual or ombined use of UV, IR, NMR and Mass spectroscopic techniques
Sugges	sted readings
	Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford University Press. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A, page
	no. 713-769, and B, Plenum Press. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
4.	Organic Chemistry, R.T. Morrison, R.N. Boyd and S.K. Bhattacharjee, Pearson Publication (7 Edition)
5.	Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad, Pearson Education.
	Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
7.	Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge University Press.
8.	Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, Academic Press.
9.	Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
10	. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya Shankar Singh, Pearson Education.
11	. Mechanism in Organic Chemistry, Peter Sykes, 6 th Edition
12	. Molecular Orbital and Organic chemical reactions, Ian Fleming Reference Edition, Wiley
	. Reactions, Rearrangements and Reagents by S. N. Sanyal . Name Reactions, Jie Jack Li, Springer
	Name Reactions and Reagents in Organic Synthesis, Bradford P. Mundy Organic Reaction Mechanisms, V.K. Ahluwalia, R.K. Parasher, Alpha Science International, 2011.
17	. Introduction to Spectroscopy, Donald L. Pavia, Gary M. Lampman, George S. Kriz, Thomson Brooks.
18	. Spectrometric Identification of Organic Compounds, R. Silverstein, G.C Bassler and T.C. Morrill, John Wiley and Sons.
	 Organic Spectroscopy, William Kemp, W.H. Freeman & Compan. Organic Spectroscopy-Principles and Applications, Jagmohan, Narosa Publication.
	. Organic Spectroscopy, V.R. Dani, Tata McGraw Hill Publishing Co. . Spectroscopy of Organic Compounds, P.S. Kalsi, New Age International Ltd.

	Students will be able t	o understand:
	-	ation and reduction reactions with various reagents.
	Alkylation	
		ereochemistry and applications of the different reactions
	and Rearrangen	Nucleophilic and Electrophilic substitution reactions and
	its mechanisms	Nucleophile and Electrophile substitution reactions and
	> Applications of	f UV, IR spectroscopy, NMR spectroscopy and Mass
		and Structure determination involving individual or
	combined use o	f the above spectral techniques
	Course Code:	Course Title: Organic Chemistry LAB
	MSCHLB203P/ MSCHDE203P	
	1015011012051	
2	Course Credit: 2	Total hours: 60 Hrs
Sr. No.	Course Contents (Toj	pics & subtopics)
	Separation of Binary	mixture using micro-scale technique
	1. Separation of binar	y mixture using physical and chemical methods.
	analysis and confin	f one of the components with the help of chemical mation of the structure with the help of derivative physical constant.
	3. Purification and de second component	termination of mass and physical constant of the
	The following typ	es are expected:
	(i) Water soluble/w	vater insoluble solid and water insoluble solid,
	(ii) Non-volatile Li	iquid-Non-volatile liquid (chemical separation)
	(iii) Water-insolub	le Solid-Non-volatile liquid.
	Minimum three mixt expected.	cures from each type and a total of ten mixtures are
	Suggested readings	
	1. Systematic Qualita Longman)	ative organic analysis, H. Middleton (Orient
	2. A Handbook of O	rganic Analysis, H.T. Clark (Orient Longman)
	3. Systematic Identif Wiley, New York	ication of organic compounds, R.L. Shriner (John
	4. Practical Organic	Chemistry by Mann and Saunders.
	5. Advance Practical	Organic Chemistry, N.K. Vishnoi, Vikas Publication
	Course outcomes:	

Stud	ents will be able to understand:
۶	Separation of binary mixture using physical and chemical methods.
	Characterization of the components with the help of chemical analysis and confirmation of the structures with the help of derivative preparationand their physical constants.
	Purification and determination of mass and physical constant of the components.

	Course Code: MSCHDC204T/ MSCHDE204TCourse Title: Analytical Chemistry	
	Course Credit: 4 Total contact hours: 60 Hrs	
Sr. No.	Course Contents (Topics & subtopics)	Req d.
	UNIT I	15 Hrs
	Chromatography	
1.1	Recapitulation of Basic Concepts in Chromatography Concept of plate an	d
	rate theories in chromatography: efficiency, resolution, selectivity and	
	separation capability, Van Deemar equation and broadening of	
	chromatographic peaks, Optimization of chromatographic conditions.	
1.2	Gas Chromatography: Principle –GSC and GLC, Column and Stationar	·y
	Phases, column oven, packed columns, stationary phases for packed	
	columns, micro packed columns, capillary columns, Optimum Practical	
	Gas velocity, stationary phases for wall-coated open tubular columns,	
	Adsorbents in GSC-alumina, silica gel, molecular sieves, carbon materials	8,
1.3	Gas Chromatography Instrumentation- Carrier gas and controls, Sample	
	introduction/injection system, column and oven, detectors, applications	
	Ray fluorescence, Absorption, and Diffraction Spectroscopy.Mass Spectrometry: Recapitulation, Instrumentation, Ion sources for molecular studies, Electron impact, Field ionization, Field absorption, Chemical ionization and fast atom bombardment sources. Mass analyzers: Quadrupole, Time of flight and Ion trap. Applications.	
	principle, single dilution, double dilution, and applications.	15 Hrs
3.1		1.5 1115
	Ion beams types- Proton, Noble gas ions other ions, Liquid metal ion sources, Properties, Ion beam specimen interaction- Kinematics, impact parameter, distance of closest approach, stopping power, cross-sections low energy interactions high energy interactions	
3.2		_
	Recapitulation of AAS, Atomic spectroscopy based on Plasma, Arc and Spark Sources- Introduction, Principle, Instrumentation and Application	n.

	UNIT IV	15 Hrs
	Electroanalytical Methods (Numerical are Expected)	
4.1	Polarography: Recapitulation of classical DC Polarography limitations sensitivity optimization Advances In DC Polarography –Rapid DC, TAST, Pulse-Normal Pulse and Differential pulse	
4.2	Voltammetry –Basic principle, Methodology and Applications of Linear sweep voltammetry, Cyclic voltammetry and Stripping voltammetry	
4.3	Coulometry: Introduction, Principle, Instrumentation, Coulometry at controlled potential and controlled current, Coulometric titrations, applications	
4.4	Electrochemical Biosensors- Potentiometric and amperometrc biosensors enzyme-based biosensors, Biocatalytic membrane electrode	
	REFERENCE BOOKS	
1	Introduction to instrumental analysis by R. D. Broun, Mc Graw Hill (1987) Dean	
2	Instrumental methods of chemical analysis by H. Willard, L. Merrit, J.A. settle.	
3	Fundamentals of analytical chemistry by D. A. Skoog, D. M. West and H. J.	
4	Principles of Instrumental Analysis Skoog, West, Niemann.	
5	Thermal analysis by W.W. Wendlandt, John Wiley, (1986)	
6	Vogel Text Book of quantitative analysis 6th Ed.	
7	Preparative chromatography Chrome Ed. book series, Raymond P. W. Scott	
8	Cyclic Voltammetry and frontiers of electrochemistry by N.Noel and K.I. Vasu IBH, New Delhi (1990)	
9	Electrochemical Methods: Fundamentals and Applications by Allen J. Bard and Larry R. Faulkner.	
10	Practical HPLC method Development, Snyder, Kirki and Glajch, Wiley India Pvt.	
11	Skoog, West, Holler and Crouch. Fundamentals of analytical chemistry, 8 th Ed.,	
	Course Outcome	
1	To study the separation techniques, optical methods of chemical analysis, electro analytical techniques and thermal methods of analysis	
2	To give introduction to students about different spectroscopy techniques.	
3	To learn the basics of electro analytical techniques.	
4	To introduce the concept Ion beams as a source in chemical analysis.	

Course Title: Analytical Chemistry LAB
Total contact hours: 60 Hrs
Determine the amount of Ti(III) and Fe(II) in the given solution by titrating with Ce(IV) potentiometrically.
Determine the percentage purity of a sample of sodium benzoate /Glycine/Orth or Para nitro aniline by using perchloric acid in a non-aqueous medium by using Combined glass electrode potentiometrically.
Determine the amount of Nitrite present in the given water sample calorimetrically.
Determine the amount of Fe(II) and Fe(III) present in the given solution by spectrophotometric method using 1-10 phenanthroline.
Determine the ion exchange capacity and exchange efficiency of the given cation exchange resin.
Determine the break through capacity of a given cation exchange resin.
Suggested reading
Quantitative Inorganic analysis including elementary Instrumental analysis by A.I.Vogel. Third edition. ELBS 1964
Analytical Chemistry by Gary D. Christian, 6th edition, John Wiley and sons Publication
Ewings Analytical Instrumental Handbook, Third Edition. Edited by Jack Cazes
Course outcomes
Students will be able to understand, acquire knowledge on Basic concepts of Analytical Chemistry, Stoichiometric Calculations, Safety in laboratory, spectroscopy and Thermal methods.

Course Code: MSCHOJ201P/ MSCHFP201P	Course Title: On Job Training / Field Project (Course Credit : 4)
	Students have to complete On Job training/ Field Project in summer vacation.